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Ultraviolet irradiation of solutions of 1-hydroxyxanthine causes extensive photoreduction. Concomitantly, 
there is some photoisomerization to  3-hydroxyxanthine tha t  is less rapidly photoreduced. This novel rearrange- 
ment of a hydroxyl from N-1 to N-3 occurs in either the neutral species of 1-hydroxyxanthine or its anion. Two 
structurally related purines, 1-hydroxyguanine and 1-hydroxyisoguanine, showed no evidence of comparable 
photoisamerization of the N-hydroxyls. The former undergoes photoreduction only, regardless of the ionic state. 
Irradiation of the cation of 1-hydroxyisoguanine yielded isoguanine and its 8-hydroxy derivative, while irradia- 
tion of the anion induced photoreduction and ring opening to  two imidazoles, 4(5)-amino- and 4(5)-ureidoimida- 
zole-5(4)-carboxamides. 

Previous studies on the reactions of esters2 of the onco- 
gen3 3-hydroxyxanthine demonstrated that a t  certain pH’s 
spontaneous reduction t o  xanthine is one mode of its reac- 
tivity. A comparable reduction of 3-hydroxyxanthine, or of 
3-acetoxyxanthine, can be accomplished photochemically, 
either by direct uv irradiation in solution or by irradiation 
of the dry solid, to produce a free radical that  is reduced 
instantly upon reaction with water.4 These observations 
prompted a more detailed study of the photoinduced reac- 
tions of N-oxidized purines in s ~ l u t i o n . ~  Photoreduction 
and photorearrangements of oxygen from N to C are usu- 
ally ~ b s e r v e d . ~ - l l  We now report that  photoreduction of 
1-hydroxyxanthine ( I )  (Scheme I) in solution is accompa- 
nied by a novel photoisomerization of the N-hydroxyl to 
form 3-hydroxyxanthine (2) .  This isomerization is of inter- 
est from both chemical and biological respects, since 2 is a 
potent ~ a r c i n o g e n , ~  while 1 is not.12 The photochemical 
reactivities of two structurally related derivatives, 1-hy- 
droxyguanine (4) and 1-hydroxyisoguanine (6),  are also 
examined. 
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Results 

Each of the N-hydroxypurines was irradiated in deaer- 
ated solutions with a Corex filter a t  pH values selected to 
maximize the amount of a single ionic species. The pKa’s 
associated with the protonation and first two ionizations 
of 3-hydroxyxanthine (2) are 0.35, 6.71, and 9.65.13 The 
neutral species of 2 was irradiated at  pH 3 and the anion 
a t  pH 9; 2 was also irradiated a t  pH 0, where it is partial- 
ly protonated. Xanthine (3) was the only uv-absorbing 
product in each case. The rate of photodecomposition of 2 
increased significantly with increased pH. In Figure 1 the 
rates of the disappearance of 2 and the yields of 3 are 
plotted for the three pH’s as a function of time. 

The pKa’s for the protonation and first two ionizations 
of 1 are 0.85, 6.54, and 9.94.14 Irradiation of 1 a t  pH’s 0, 3, 
and 9 induced photoreduction to 3 (14-20%) and rear- 
rangement to 2 (2-7%). Prolonged irradiation of 1 gave 3 
only. The amounts of 1, 2, and 3 were determined fol- 
lowing irradiation of 1 for various periods of time and the 
values are plotted as a function of time in Figure 2. 

Irradiation of 4 (pK,’s 3.49, 6.73, and 11.5115) in solu- 
tions a t  either pH 2 for the cation, or a t  pH 5.5, where the 
neutral species should predominate, gave only the photo- 
reduction product, guanine ( 5 )  (24-28%). The irradiation 
of the anion at  pH 10 yielded mainly 5 (23%) with traces 
of two unidentified uv-absorbing compounds and an insol- 
uble precipitate. 

Because of its low solubility 1-hydroxyisoguanine (6)  
could be irradiated in a sufficiently concentrated solution 
only as its cation a t  pH’s 0-3 or as its monoanion a t  pH 10 
(pK,’s 3.64, 6.41, and 11.48).14 The irradiation of 6 a t  pH 
3 gave only the reduction product, isoguanine ( 7 ,  36%), 
and a trace of an unknown whose uv absorption suggests 
an imidazole. The irradiation a t  pH 0 gave 7 (3670), traces 
of an unidentified product, and the 8-hydroxy derivative 
of 7 ,  6-amino-2,8-dihydroxypurine (170). The last was 
identified by comparison of its uv spectra a t  three pH’s 
with those of an authentic sample.16 Comparable photo- 
oxidation a t  C-8 under acid conditions was noted pre- 
v i ~ u s l y . ~  

The first ionization of 6 was deducedT3 to  occur from 
the N-hydroxyl group, and the species a t  pH 10 should be 
the enolate anion shown as 6 (Scheme I). Upon irradiation 
of the anion three uv-absorbing products were obtained, 
all in low yield. These include 7 (870) and two products 
resulting from ring opening, 4(5)-aminoimidazole-5(4)-car- 
boxamide (8, 3%) and 4(5)-ureidoimidazole-5(4)-carboxam- 
ide (9, 8%). The structure of 9, which has not previously 
been reported, was deduced from its uv, nmr, and mass 
spectral properties. It was authenticated by comparison of 
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Figure 1. Irradiations of 3-hydroxyxanthine: ( a )  pH 0; (b) pH 3; (c) pH 9. 

these and other properties with those of a sample synthe- 
sized from 8 and KCNO. 

Discussion 
An initial study5 examined the influence of ionic and 

tautomeric states on the photochemical reactivity of 1- 
hydroxyhypoxanthine. That  compound, with a single iso- 
lated hydroxamate function, was selected for its minimal 
tautomeric possibilities. Photoreduction was observed 
both from the neutral N-hydroxy species and from its con- 
jugate enolate anion, but was favored when the neutral 
form predominated. Ionization was a prerequisite for pho- 
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torearrangement, which was the predominant photoreac- 
tion of the anion. 

The state of ionization also exerts a strong influence on 
the photochemistry of the more complex N-hydroxyxan- 
thines. The several pK,'s of 1-hydroxy- (1) and S-hydrox- 
yxanthine (2) have been determined and the sequence of 
ionization of 3-hydroxyxanthine has been assigned as 
3-OH, 9-H, l-H.I3 This sequence parallels that  of the par- 
ent xanthine.17Js For 1-hydroxyxanthine, ionization of 
the 1-hydroxyl group is not associated with the first pK,, 
but with the second pK, of These data and the 
known sequence of xanthine indicate that the ionization 
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Figure 2. Irradiations of 1-hydroxyxanthine: ( a )  pH 0: (b) pH 3; (c )  pH 9. 
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sequence of 1 is 3-H, I-OH, 7,9-H. In general13 an N-hy- 
droxyl substituent lowers all of the ionization pK,’s for a 
compound. The digression of 1 from the usual ionization 
sequence, Le.,  N-1 ionization following that  of N-3, can be 
attributed to the greater acid-strengthening effect of the 
1-hydroxyl group on the pyrimidine moiety. Both 1 and 2 
exist as the N-hydroxyl form in the neutral species.13 The 
monoanions, however, must differ if each ionizes from N3. 
The monoanion of 2 contains a nitrone group,13 compara- 
ble to that of 1-hydroxyhypoxanthine, while the monoan- 
ion of 1-hydroxyxanthine should have no interaction with 
the N1 hydroxyl, leaving it in the nonionized N-hydroxy 
form. Although the closeness of the second pK, (9.94) of 
1, that  of the N1 hydroxyl, makes it impossible to achieve 
a “pure” monoanion of 1, it is evident from uv spectra 
that there are different states of ionization of the N-hy- 
droxyl groups in the monoanions of 1 and 2. 

Photolysis of any ionic species of 2 (Figure 1) gave 3 as 
the only uv-absorbing product. The higher photodecompo- 
sition rate and poorer material balance with increasing 
ionization are analogous to results from the irradiations of 
1-hydroxyhypoxanthine. Irradiation of 1, either as the 
neutral species (pH 3) or primarily as the monoanion (pH 
9.0), gave qualitatively similar results (Figure 2) ,  a com- 
plete loss of 1 in 30 min and comparable yields of 2 (4 and 
2%) and of 3 (20 and 14%). These similarities agree with 
the deduction that the extent of ionization of the N-hy- 
droxyl group is approximately the same for both the neu- 
tral species and the monoanion of 1. The small differences 
in rates of decomposition and yields might initially be at- 
tributed to a small degree of ionization of the K1 hydroxyl 
a t  pH 9 to form some dianion. An alternative interpreta- 
tion is discussed below. 

The data for 1- hydroxyhypoxanthine indicated that the 
pK, for its N-hydroxyl group was lowered 2-3 pH units in 
the excited state.5 Therefore, 1 and 2 were each irradiated 
a t  pH 0, where ionization of the N-hydroxyl function 
should be suppressed even if the pK,’s of their excited 
states (pK,*’s) are shifted to  lower values. Should the 
pKa*’s be lower than those of the ground states, a differ- 
ence in the photochemical reactivities a t  pH 0, compared 
to those a t  pH 3, would be expected. The rate of photoly- 
sis of 3-hydroxyxanthine was decidedly slower a t  pH 0 
(Figure l a ) ,  but the rate of formation and apparent maxi- 
mum yield of xanthine were identical with those from the 
irradiation a t  pH 3 (Figure Ib) .  The rate of photolysis of 1 
at pH 0 (Figure ;!a) was only slightly lower than that a t  
pH 3, but the yield of xanthine a t  pH 0 (43%) was twice 
that obtained at  pH 3 (21%). This difference suggests that 
the pK, of the N-hydroxyl proton of 1 is lowered in the 
excited state, probably to below pH 3. This pK,* would 
then be below that  of the ground-state S3-H pK, (6.54) 
and consequently in the excited state both N3 H and 
N1 OH should be completely ionized a t  pH 9. This deduc- 
tion clarifies the observation that ionization of the N-3 
proton has little effect on the photoreactivity of 1. The 
small differences in the data a t  pH’s 3 and 9 correspond to  
a completion of ionization of the N-hydroxyl at  pH 9 and 
not to the partial ionization indicated by ground-state 
pK,’s. These data indicate that photoreduction of 1 is fa- 
vored by the presence of the nonionized 1%‘-hydroxyl 
species, predominant a t  pH 0, but that it can occur to a 
smaller extent from the ionized form. 

The unexpected photoisomerization of 1-hydroxy- to 3- 
hydroxyxanthine was observed at  all pH’s studied (Figure 
2) .  The yield of 2 was maximal at  pH 0 and decreased 
with increasing pH. This is partially due to the greater 
photolability of 2 a t  higher pH’s (Figure 1). The 6% yield 
of 2 after irradiation of 1 a t  pH 0 for 30 rnin (Figure 2a) is 

essentially a maximum formation of 2 under these condi- 
tions, since 2 was not significantly degraded within 30 min 
under comparable conditions (Figure l a ) .  By contrast, the 
4% of 2 formed after irradiation of 1 for 30 rnin a t  pH 3 
(Figure 2b) does not represent a maximum yield, since 
over half of any 2 formed would have been decomposed 
during this period (Figure l b ) .  The corrected yield of 2 
may be estimated as -890. Similarly, the maximum yield 
of 2 isolated after irradiation of 1 a t  pH 9 for 5 min was 
2 . 8 0 ,  but a t  that time -40% of 2 would have been de- 
composed, and the corrected value of 2 is -4%. The high 
photolability of both 1 and 2 at pH 9 reduces the accuracy 
of this estimated yield, but it is certainly less than that at  
pH 3. 

A plausible mechanism for the rearrangement of an N- 
hydroxyl group from S-1 to N-3 can be suggested based 
upon mechanisms proposed for- other photoisomerizations. 
Ionization of the N-hydroxyl was shown to be necessary 
for N to C photorearrangement of 1-hydroxyhypoxanthine, 
and it was postulated that the nitrone component of the 
anion rearranged uia an intermediate ~ x a z i r a n e . ~  If 1 to 3 
photoisomerization is a comparable intramolecular pro- 
cess, it should also occur preferentially from a nitrone- 
containing species. It would thus be dependent upon ion- 
ization of the N-hydroxyl group and should increase with 
increasing pH, as noted for N to C photorearrangement of 
1-hydroxyhypoxanthine. The increased photolability of 2 
a t  higher pH’s makes it difficult to evaluate this accurate- 
ly, but the estimated corrected values for maximum yield 
of 2 show that ionization of the N-hydroxyl of 1 does not 
enhance its migration. Although little difference was 
noted in yields of 2 between pH’s 0 and 3, the large 
change in yields of xanthine indicates that  in this pH 
range there is some change in the form of 1 that influ- 
ences its photochemical reactivity. This was interpreted 
to indicate that the nonionized N-hydroxyl species was 
present to a greater extent a t  pH 0 and that 1 must have a 
pK,* in this range. The absence of a parallel change in 
the yield of 2 suggests that  formation of 2 is not associated 
with ionization of 1 in this range. One plausible intramo- 
1ecularlQ mechanism that is consistent with rearrange- 
ment uia a nitrone intermediate without ionization in- 
volves a photoinduced enolization of 1. If 1 is converted to 
an enol, e . g . ,  1’ (Scheme 11), as a primary photochemical 
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process,20 the nitrone thus formed could then be photo- 
chemically converted to  an oxazirane (10) comparable to 
that proposed for S to C rearrangements.21 Since the ad- 
jacent position is substituted, 10 might then undergo a 
subsequent rearrangement to  the isomeric oxazirane (1 1) 
and thence to 2. Sequential oxazirane migrations have 
been proposed previously in the photochemical isomeriza- 
tions of N-oxides,22 but this is the first example of a pho- 
toinduced allylic N to N migration. 
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Two other 1-hydroxypurines structurally related to 1, 
1-hydr~xyguaninel~ (4) and 1-hydroxyi~oguaninel~ (6 ) ,  
were studied as possible additional examples of such an 
N-hydroxyl rearrangement. Irradiation of 4 a t  selected 
pH's yielded none of the known30 3-hydroxyguanine, but 
produced guanine ( 5 )  as the only, or the predominant, uv- 
absorbing product. 

The possible rearrangement product from l-hydroxyiso- 
guanine (6) would be 3-hydroxyisoguanine. That  com- 
pound is not reported, but certain of its properties can be 
predicted by analogy to those of other known purine %ox- 
i d e ~ . ~ , ~ , ~ ~  There was no evidence of such a product. The 
photoproducts obtained from the irradiation of 6 in acidic 
solution were isoguanine (7,  36%) and 6-amino-2,8-dihy- 
droxypurine (170). Irradiation of the anion produced iso- 
guanine (7,  8%), 4(5)-aminoimidazole-5(4)-carboxamide (8, 
3%), and 4(5)-ureidoimidazole-5(4)-carboxamide (9, 8%). 
Comparable products resulting from ring opening of inter- 
mediates have been isolated from irradiations of heterocy- 
clic N - o x i d e ~ . ~ ~  One suggested33 route for formation of 
such products involves initial rearrangement of the N- 
oxide to an oxazirane, ring expansion, followed by hydro- 
lytic ring cleavage of the ring-expansion product. Since 
the first ionization of 6 produces a nitrone-containing eno- 
late anion, the parallels previously noted5 between the 
photochemical reactivity of such anions and heterocyclic 
N-oxides should also be applicable to that  of 6. Two iso- 
meric oxaziranes, 12 and 15 (Scheme 111), could form from 
6. Ring expansion21 of these would lead to the isomeric 
imidazolooxadiazepines, 13 and 16, respectively. Hydroly- 
sis of these would yield initially the two disubstituted 
imidazoles, 14 and 17. The ureido derivative isolated, 9, 
can only arise from the N-hydroxyureide, 14, or its precur- 
sor, This suggests that  the oxazirane 12 is a requisite 
intermediate from 6. 
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No plausible path from 12, 13, or 14 to 8 is obvious, nor 
does 8 arise experimentally from 7 or 9 under the condi- 
tions employed. A facile explanation for the formation of 8 
is available from reactions of the isomeric oxazirane, 15, 
via the path 15 - 16 -+ 17 -+ 8. Following ring opening of 
16, both the formate and amidoxime groups of 17 must 
hydrolyze to lead to 8. Thus oxazirane 15 apparently 
undergoes reactions other than rearrangement to 3-hy- 
dro~yisoguanine.~6 

These studies demonstrate that only certain structural 
systems permit migration of the hydroxyl from N-1 to 
N-3. Under some conditions oxazirane formation occurs in 
a direction unfavorable for 1 to 3 migration, as suggested 
by the formation of 9 from 6 uia 12 (Scheme 111). Even the 
appropriate oxazirane intermediates can be diverted to 
other reactions, as shown by the production of 8. The hy- 
droxyl isomerization apparently requires both carbonyl 
groups, since replacement of either carbonyl of the pyrim- 
idine moiety prevents rearrangement. No comparable 1 to 
3 rearrangement was observed with l-hydroxyhypoxanth- 
ine,5 nor has any reverse 3 to 1 hydroxyl migration been 
noted from 2 ,  although the relative photochemical sensi- 
tivities of 1 and 2 would make detection of 1 from 2 diffi- 
cult. The requisite structural features for the rearrange- 
ment have thus far been found only in 1-hydroxyxanthine. 

Experimental Section 
The uv spectra were determined with a Unicam SP800A record- 

ing spectrophotometer and the nmr spectra with a Varian A-60 
spectrometer, using T M S  as  an internal standard. An ISCO UA-2 
uv analyzer was used to monitor column eluates. except as noted 
for values in Figures 1 and 2. The A,,,, and t values were deter- 
mined with a Cary 15 spectrophotometer. Elemental analyses 
were performed by Spang Microanalytical Laboratories. Ann 
Arbor, Mich. Paper chromatograms were developed, ascending, 
on Whatman No. 1 paper using the following solvents: (A) 

NaaHPOd-isoamyl alcohol (3:2); and were viewed under uv light 
(253.7 n m ) .  Samples of 7 and 8 were obtained from Cyclo Chemi- 
cal Co. for comparison with photoproducts from 6.  

M solutions t h a t  had been adjusted to pH 3.0 or 9.0 with 1 A' HCI 
or 28% "&OH; 3 N CF&OOH was used for p H  0. Xitrogen was 
bubbled through solutions for 2 hr prior to irradiations tha t  were 
then carried out in an immersion apparatus with a 450-W Hano- 
via high-pressure mercury lamp with a Corex filter, as  described.s 
Aliquots were withdrawn periodically and the photoproducts were 
analyzed by ion exchange chromatography. For identification the 
solutions were concentrated in uucuo to a small volume when the 
reactions were complete and  the products were separated by 
chromatography. 

Chromatography. Photolysis products were separated with a 
Bio-Rad AG-50, X8 [Hf] ,  200-400 mesh column (9 X 220 m m )  
tha t  was monitored with an.ISCO uv analyzer. Yields of reaction 
products were calculated from their known e m a x  values. The  A,,, 
and e m a x  values a t  pH 0 were determined to be 267 nm (7.0 X 
103) for 8 and 255 nm (11.4 x lo3) for 9. The quantities of 1, 2, 
and 3 in the mixture of products following the irradiation of 1 for 
various times were determined with a standardized AG-50 [H-]  
column (9 x 150 m m )  tha t  was pumped at  60 ml/hr  and was 
monitored a t  240, 260, and 290 nm with a Beckman DB spectro- 
photometer. The column was eluted with 0.05 A' HC1, and the 
products were isolated in the sequence (ml)  2 (85),37 1 (185), 3 
(340).37 Linear plots of known concentrations of 1, 2, and 3 against 
their OD values a t  260 nm were used as  calibration curves to 
calculate the yields shown in Figures 1 and 2. Values were repro- 
ducible within f 5 % .  

Identification of 3-Hydroxyxanthine ( 2 ) .  This photoproduct 
from 1 was unambiguously identified by comparisons of it with a n  
authentic ~ a m p l e ' 3 > 3 ~  of 2. The uv absorption a t  selected pH's of 
a sample of the photoproduct isolated from a Bio-Rad AG-50 [ H + ]  
column was identical with values reported13 for 2 a t  those pH's. 
The Rf values of both were identical in three solvents: A. ( R , ) ,  1 
(0.09). 2 (0.09), 3, (0.28): B, 1 (0.57). 2 (0.56), 3 (0.34); C. l (0 .58) .  
2 (0.60). 3 (0.47). While the Rf values of 1 and 2 are close in all 
solvents, they are easily distinguished when the paper is viewed 

CH3CS-HzO-28% NHIOH (7:2:1 v / v ) ;  (B)  3% NHkC1; (C)  5% 

Irradiation Procedures. Samples were irradiated in 1.2 X 
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under  u v  l i gh t :  1 appears as a da rk  pu rp le  spot, but 2 has b lue  
fluorescence. T h e  photoproduct  also mani fested b lue  fluorescence 
ident ica l  w i t h  t h a t  o f  2 under  u v  l i gh t .  T h e  photoproduct  a n d  au-  
thent ic  2 h a d  iden t i ca l  posit ions o f  e lu t i on  f r o m  t w o  standard ized 
columns. F r o m  t h e  AG-50 [H-] c o l u m n  b o t h  appeared a t  85 ml. 
F r o m  a B i o - R a d  A-6,38 6 X 400 mm column,  e lu ted a t  50" wi th 0.4 
M a m m o n i u m  formate (pH 4.7) a t  20 ml/hr a n d  mon i to red  wi th 
the  B e c k m a n  DB spectrophotometer, authent ic  2 a n d  the photo-  
product  were e lu ted a t  17.8 ml, 3 a t  20 ml, a n d  1 at 22 ml. 
4(5)-Ureidoimida.zole-5(4)-carboxamide (9). A solut ion of 267 

m g  (3.3 m m o l )  of KCKO a n d  198 m g  (3.3 m m o l )  o f  H O A c  in 20 
ml o f  H2O was added t o  a so lut ion of 340 m g  (3.3 m m o l )  o f  8 in 20 
ml of water. T h e  clear so lut ion was s t i r red a t  r o o m  temperature 
overnight, t he  solvent was t h e n  evaporated t o  dryness in cacuo, 
and  the  b r o w n  residue was dissolved in -40 ml of methanol .  
A f te r  f i l t r a t i on  the  solvent was removed in uucuo a n d  t h e  residue 
was chromatographed o n  a 2.4 x 24 c m  AG-50 [H'] c o l u m n  by 
e lu t i on  w i t h  1 A' HC1 t o  y ie ld  f i r s t  9 (35 m g )  a n d  t h e n  8 (150 mg) .  
T h e  crude HC1 salt of 9 was neutra l ized by passing a n  aqueous 
so lut ion o f  it th rough  a B io -Rad  AG-3 [OH- ] co lumn a n d  e lu t i ng  
w i t h  HzO. T h e  eluate was evaporated in uucuo to give 30 m g  
(11%) o f  pu re  4-ureidoimidazole-5-carboxamide: mp 230" dec; 
nmr (CF3C02H) 6 6.96 (s); nmr (MezSO-ds)  a broad, unresolved 
m u l t i p l e t  centered near  6 7.0 ( T h e  add i t i on  of D20 caused col- 
lapse t o  a singlet a t  6 7.35. T h e  m u l t i p l e t  in tegra l  was seven 
t imes t h a t  of t he  singlet.): mass spectra (chemical  ion izat ion)  m/e  
170 (M + l ) ,  153, 127, a n d  109 (major  peaks): u v  A,,, (H20) 
( p H )  240, 255 (2), 232, 267 (6). a n d  281 nm ( i 2 ) .  

C. 35.35. H. 4.23: 3'. 41.47. 
Anal Calcd for C~H73502: C, 35.51; H. 4.17: S,  41.40. Found:  
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